Privacy-Preserving Restricted Boltzmann Machine

نویسندگان

  • Yu Li
  • Yuan Zhang
  • Yue Ji
چکیده

With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...

متن کامل

The Large Margin Mechanism for Differentially Private Maximization

A basic problem in the design of privacy-preserving algorithms is the private maximization problem: the goal is to pick an item from a universe that (approximately) maximizes a data-dependent function, all under the constraint of differential privacy. This problem has been used as a sub-routine in many privacy-preserving algorithms for statistics and machine-learning. Previous algorithms for th...

متن کامل

Imposing higher-level Structure in Polyphonic Music Generation using Convolutional Restricted Boltzmann Machines and Constraints

We introduce a method for imposing higher-level structure on generated, polyphonic music. A Convolutional Restricted Boltzmann Machine (C-RBM) as a generative model is combined with gradient descent constraint optimization to provide further control over the generation process. Among other things, this allows for the use of a “template” piece, from which some structural properties can be extrac...

متن کامل

Universal Approximation Results for the Temporal Restricted Boltzmann Machine and the Recurrent Temporal Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) has proved to be a powerful tool in machine learning, both on its own and as the building block for Deep Belief Networks (multi-layer generative graphical models). The RBM and Deep Belief Network have been shown to be universal approximators for probability distributions on binary vectors. In this paper we prove several similar universal approximation resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014